🎧

Customer Service

Support automation, sentiment analysis, and experience optimization

3
Applications
101
Use Cases
5
AI Patterns
5
Technologies

Applications

3 total

Customer Service Automation

AI that handles routine support inquiries and analyzes customer sentiment at scale. These systems resolve common questions via chat, route complex issues to agents, and surface insights from feedback. The result: 24/7 response, lower support costs, and agents focused on what matters.

97cases

Clinical Trial Design Automation

This application area focuses on automating and accelerating the design and operationalization of clinical trials, from protocol authoring through configuration of eClinical systems. It uses advanced language models and configurable platforms to draft structured, compliant protocols, standardize terminology, and translate study designs into executable digital workflows, case report forms, and data capture configurations. It matters because trial design and setup are major bottlenecks in drug development—slow, expert‑intensive, and prone to rework due to regulatory, operational, and data‑management complexities. By systematizing protocol creation and rapidly configuring eClinical environments to match those protocols, sponsors and CROs can shorten study start‑up timelines, reduce change‑order costs, support more complex and decentralized trial models, and improve compliance and data quality across the trial lifecycle.

2cases

Precision Oncology Decision Support

This application area focuses on using advanced analytics to support clinical decisions across the cancer care pathway, from diagnosis through treatment selection and monitoring. It integrates heterogeneous data sources—such as genomic sequencing results, pathology, medical imaging, and electronic health records—to generate structured insights that help clinicians interpret complex findings and choose the most appropriate interventions for each patient. It matters because oncology increasingly depends on precision medicine, where treatment effectiveness hinges on nuanced biomarkers and molecular profiles that are too complex and voluminous for manual review at scale. By automating variant interpretation, risk stratification, prognosis estimation, and therapy or clinical-trial matching, these systems reduce diagnostic bottlenecks, improve consistency and quality of care, and enable more personalized, evidence-based treatment decisions for conditions like non–small cell lung cancer and other malignancies. AI is used to process and classify genomic variants, detect patterns in imaging and pathology, synthesize unstructured clinical notes, and generate ranked recommendations or structured reports for clinicians. The result is faster turnaround, more accurate and reproducible assessments, and better alignment of patients with the therapies most likely to benefit them.

2cases