Precision Oncology Decision Support
This application area focuses on using advanced analytics to support clinical decisions across the cancer care pathway, from diagnosis through treatment selection and monitoring. It integrates heterogeneous data sources—such as genomic sequencing results, pathology, medical imaging, and electronic health records—to generate structured insights that help clinicians interpret complex findings and choose the most appropriate interventions for each patient. It matters because oncology increasingly depends on precision medicine, where treatment effectiveness hinges on nuanced biomarkers and molecular profiles that are too complex and voluminous for manual review at scale. By automating variant interpretation, risk stratification, prognosis estimation, and therapy or clinical-trial matching, these systems reduce diagnostic bottlenecks, improve consistency and quality of care, and enable more personalized, evidence-based treatment decisions for conditions like non–small cell lung cancer and other malignancies. AI is used to process and classify genomic variants, detect patterns in imaging and pathology, synthesize unstructured clinical notes, and generate ranked recommendations or structured reports for clinicians. The result is faster turnaround, more accurate and reproducible assessments, and better alignment of patients with the therapies most likely to benefit them.
The Problem
“Evidence-grounded, multi-modal oncology recommendations from EHR + genomics + imaging”
Organizations face these key challenges:
Biomarker interpretation and variant classification varies by institution and individual reviewer
Clinicians spend hours cross-referencing guidelines, trials, and drug labels for each case