Precision Oncology Decision Support

This application area focuses on using advanced analytics to support clinical decisions across the cancer care pathway, from diagnosis through treatment selection and monitoring. It integrates heterogeneous data sources—such as genomic sequencing results, pathology, medical imaging, and electronic health records—to generate structured insights that help clinicians interpret complex findings and choose the most appropriate interventions for each patient. It matters because oncology increasingly depends on precision medicine, where treatment effectiveness hinges on nuanced biomarkers and molecular profiles that are too complex and voluminous for manual review at scale. By automating variant interpretation, risk stratification, prognosis estimation, and therapy or clinical-trial matching, these systems reduce diagnostic bottlenecks, improve consistency and quality of care, and enable more personalized, evidence-based treatment decisions for conditions like non–small cell lung cancer and other malignancies. AI is used to process and classify genomic variants, detect patterns in imaging and pathology, synthesize unstructured clinical notes, and generate ranked recommendations or structured reports for clinicians. The result is faster turnaround, more accurate and reproducible assessments, and better alignment of patients with the therapies most likely to benefit them.

The Problem

Evidence-grounded, multi-modal oncology recommendations from EHR + genomics + imaging

Organizations face these key challenges:

1

Biomarker interpretation and variant classification varies by institution and individual reviewer

2

Clinicians spend hours cross-referencing guidelines, trials, and drug labels for each case

3

Critical context is fragmented across notes, PDFs, labs, radiology, and pathology systems

4

Tumor board preparation is manual; recommendations are hard to audit and explain

Impact When Solved

Faster, evidence-based therapy decisionsEnhanced accuracy in biomarker interpretationSimplified tumor board preparation

The Shift

Before AI~85% Manual

Human Does

  • Manual review of sequencing reports
  • Cross-referencing guidelines and trials
  • Summarizing imaging/pathology findings

Automation

  • Basic data extraction from reports
  • Simple keyword matching for guidelines
With AI~75% Automated

Human Does

  • Final review and approval of therapy recommendations
  • Handling edge cases and exceptions
  • Providing strategic oversight for complex cases

AI Handles

  • Normalized clinical input processing
  • Automated variant classification
  • Real-time matching with guidelines
  • Generation of clinician-ready summaries

Solution Spectrum

Four implementation paths from quick automation wins to enterprise-grade platforms. Choose based on your timeline, budget, and team capacity.

1

Quick Win

Tumor Board Brief Generator

Typical Timeline:Days

Clinicians paste de-identified case details (diagnosis, staging, key labs, and genomics report text) to generate a structured tumor board brief: problem list, key biomarkers, guideline-aligned therapy options, and questions to resolve. Outputs are clearly labeled as drafts and require clinician verification. This level validates workflow fit and report format without deep integrations.

Architecture

Rendering architecture...

Key Challenges

  • Risk of hallucinated guidelines or drug claims without grounding
  • Inconsistent input quality (copy/paste variability, missing staging details)
  • PHI handling and de-identification discipline
  • Clinician trust: must be clearly a draft with checkable structure

Vendors at This Level

Memorial Sloan Kettering Cancer CenterMayo ClinicCleveland Clinic

Free Account Required

Unlock the full intelligence report

Create a free account to access one complete solution analysis—including all 4 implementation levels, investment scoring, and market intelligence.

Market Intelligence

Technologies

Technologies commonly used in Precision Oncology Decision Support implementations:

Key Players

Companies actively working on Precision Oncology Decision Support solutions:

+1 more companies(sign up to see all)

Real-World Use Cases