Computational Drug Discovery
This application area focuses on using computational methods to design, prioritize, and optimize therapeutic candidates—proteins, small molecules, and binders—before they reach the wet lab. It integrates structure prediction, virtual screening, and generative design to explore vast chemical and structural spaces far more quickly than traditional experimental workflows. By predicting protein structures (including hard-to-resolve or intrinsically disordered proteins) and modeling their conformations, these tools enable more rational target selection and structure-based design when experimental data are missing or incomplete. For organizations in biopharma and adjacent sectors, this dramatically compresses early R&D timelines, reduces the number of physical experiments required, and increases the probability of finding viable hits and leads. AI and physics-based models work together to propose and prioritize candidate molecules or miniprotein binders, guide synthesis planning, and improve virtual screening hit rates. The result is faster, cheaper, and more targeted discovery pipelines that expand the druggable target space and de‑risk investment in new therapeutic programs.
The Problem
“Shrink wet-lab cycles with structure-driven virtual screening and generative design”
Organizations face these key challenges:
Wet-lab screening is slow and expensive, forcing small candidate sets and missed opportunities
Limited structural biology bandwidth (cryo-EM/X-ray) delays programs, especially for hard targets