Autonomous Mission Autopilots
This application area focuses on software “autopilots” that plan, fly, and adapt complex military missions for crewed and uncrewed aircraft and other defense platforms with minimal human control. These systems ingest sensor data, mission objectives, and rules of engagement to execute surveillance, strike, electronic warfare, and logistics tasks autonomously or in tight coordination with human operators. They emphasize real‑time decision‑making in contested, GPS‑denied, or otherwise degraded environments where traditional remote control or manual piloting is too slow, risky, or manpower‑intensive. It matters because modern combat and defense operations demand greater coverage, faster reaction times, and higher sortie rates than human pilots and operators alone can sustain. Autonomous mission autopilots reduce dependence on scarce pilot talent, increase mission tempo and persistence, and enable operations in highly dangerous or complex airspace while maintaining human authority over lethal decisions. By standardizing and scaling autonomy across fleets (fighters, drones, logistics aircraft, ground and maritime systems), militaries can simultaneously improve operational effectiveness, survivability, and cost per mission.
The Problem
“Real-time mission autonomy for aircraft in GPS-denied, contested environments”
Organizations face these key challenges:
Mission replans are slow when comms are degraded and operators must manually deconflict routes, threats, and ROE
Autonomy demos work in benign scenarios but fail under sensor uncertainty, adversarial EW, or navigation drift